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A COMPATIBLE TRIANGULAR PLATE
BENDING FINITE ELEMENT

G. A. BUTLIN and R. FORDt

University of Leicester

NOTATION

a, b, c lengths of sides of triangle
D flexural rigidity
w normal (out of plane) displacement
x, y Cartesian in-plane co-ordinates
x', y' oblique in-plane co-ordinates
X, Y non-dimensional oblique co-ordinates
p, }' angles of triangle (see Fig. 1)
v Poisson's ratio
<il 2nd order Hermitian polynomial
If' 3rd order Hermitian polynomial

Superscripts
A, B, C, D, E, F, G, refer to points of the triangle shown in Fig. 1.

Subscripts

u
x
y

tangential direction along CA (see Fig. 1)
normal direction to CA
tangential direction along BA
normal direction to BA
differentiation with respect to x
differentiation with respect to y

INTRODUCTION

THE development of a triangular finite element for plate flexure is a necessary step to­
wards an element to analyse shell structures. Various attempts have been made at providing
such an element. Some earlier ones [1-3] did not ensure compatibility between adjacent
elements in their assumed displacement functions but more recently, compatible triangular
elements have been developed [4--6]. There remained a need for a compatible triangular
bending element which would yield results which would converge more rapidly to exact
values.

Energy bounds, convergence and accuracy require individual consideration.
In order to ensure that the strain energy, associated with an approximate solution in

which displacements are prescribed, is an overestimate of the exact strain energy, the
assumed displacement fields must be compatible.
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FIG. 1. Geometry of general triangle.

In order to allow eventual convergence to the exact solution as more elements are
used, two conditions must be satisfied by the assumed displacement fields. These are (a)
that uniform strain states should be allowed to occur and (b) that body movement should
be allowed to occur without straining.

Accurate results can be achieved by careful consideration of the choice of the degrees
of freedom for a particular structural element.

One of the authors demonstrated [7] the value of using high order polynomial displace­
ment assumptions, where an acute angle is enclosed between two boundaries of a plate
bending finite element.

As an example, a right-angled triangular compatible finite element was developed with
extra parameters introduced along the hypotenuse. It was shown to produce solutions which
converged more rapidly than other triangular elements, despite errors introduced by
numerical integration in the calculation of the stiffness matrix. The present finite element is
based on a similar displacement function as that used in [7], but developed for a general
triangle. The stiffness matrix has been calculated in explicit form using programmed
algebraic manipulation.

1. DERIVATION OF DISPLACEMENT FUNCTION

The effect, on the performance of a right-angled triangular bending element [7], of
introducing fifth order polynomial variation of displacement along the hypotenuse sug­
gested that quintic variation be used along all sides of a general triangle.

The choice of quintic variation of displacement along boundaries requires sufficient
nodal parameters to define this polynomial. The choice here is:

c:w ow a2 w a2w c:2ww - .~ _.__. -"
, ox' oy' ox2 ' 3xoy' ay2

at each node. Hence:

where w~r is written for the second derivative w.r.t. r at point C etc. The variation of normal
slope along a boundary is defined by a cubic polynomial in terms of the parameters at the
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nodes defining the boundary. Hence:

w~ W;<I>l (Y) +bW~s<l>2(Y)+W1<1>3(Y) +bW~<I>4(Y)

w~ = W~<I>l (Y) +CW:<I>2( Y) +W:<I>3(Y) +CW:r<l>4(Y)'

The non-dimensional oblique Y co-ordinate is defined by

Y= y'/b = (ycosecy)/b

and the second, and third order Hermitian polynomials have been used. (See Fig. 2).
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FIG. 2. Hermitian polynomials.

The displacement within the triangle is first defined by a third order polynomial in terms
of the displacement and normal slope along the boundaries AB and AC.

(
X') (XI) (XI) (XI)w

F
= W

D
<I>l ~. +ew~<I>2 -;' +WE<I>3 e +ew~<I>4 e

where e defines the length DE

e = a(1- Y)

and the oblique co-ordinate x' is defined by

X = x/fa = (X- Y cot y}/a. (1.6)
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Equation (1.5) requires the definition of w~, and w~. These quantities are known In

terms of the normal and tangential slopes along the boundaries.

I dw D

wD = wD sin" + - .-- COS"
x sib dY I

I dw E
WE = WE sin 13- ..- cos 13

x U c dY .

(1.7)

(1.8)

The function wF has the required displacement and normal slope along AC and AB.
However the displacement and normal slope along CB are not of the required form, and
hence correction functions must be added to wF to form the displacement function for the
triangle.

Firstly, the displacement along CB is required to be

wG = WCqJl(X)+aw~qJ2(X)+a2w~x'P3(X)+wB'P4(X)

+ aw~qJs(X) +a2w~x 'P6(X),

A correction function for displacement is described by a cubic polynomial along GH.

where h is the length of GH

and

h = b(1-X)

(1.9)

(1.10)

(1.I l)

To correct the normal slope along CB a further cubic polynomial along GH is required.
The normal slope should be described by

w~ = w~<I>l(X)+aW~y<l>2(X)+W:<I>3(X)+aw~/1>4(X) (1.I2)

Hence, a correction function is

(1.I3)

(1.14)

where

1 dw
G

1(dWF
)C2(X) = w~sinY+--d ,cosY--b-d

a X Y Y=Q'

The final displacement function is obtained by addition of these corrections to WF.

(1.I 5)

This function now satisfies the original requirements. Consideration was given in the first
instance to the nature of the displacement function and parameters. Inherent within this
formulation is the unique definition of displacements along each boundary by only those
displacement parameters at the ends of that boundary. Thus compatibility of displacements
between elements is ensured by compatibility between nodal parameters. This formulation
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also ensures unique definition of displacements along lines within the element such that
rigid body movements described along the boundaries produce internal displacement
fields which do not strain the element. Moreover, uniform bending in each of two ortho­
gonal directions and uniform twist can be represented by this function (illustrated in [7]).

2. CALCULATION OF THE STIFFNESS MATRIX

The calculation of the coefficients of the stiffness matrix is achieved by the standard
procedure of minimisation of the energy integral. Hence,

(2.1)

Since oblique co-ordinates were used to find w, it is convenient to express (2.1) in terms of
oblique co-ordinates. The transformation for derivatives is obtained from (1.3 and 1.6)

a 1 a
-=~-ax a ax
a cot y a cosec y a
ay = -~ ax+-b- aY'

The Jacobian is given by

(
a b cos y)

J = . = ab sin y.o bsm y

Using (2.2) and (2.3) in (2.1) it is found that

(2.2)

(2.3)

Kij = D. ab sin yf (Cl. WI +C2. W2+C3. W3+C4. W4)dX dY (2.4)
area

where
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and,
Cl = 2 cosec2 y(2 cosec2 y - (l + v))

C2 = cosec4 y

C3 = cosec2 y(cosec2 y - (l - v))

C4 = - 2 cot y cosec3 y.

Each of the integrals in (2.4) has been computed in general algebraic form in terms of the
parameters of the triangle. Stiffness matrices for triangular elements of differing geometry
are then evaluated by successive substitution for the parameters of the triangle into the

T ABLE I. LOAD VECTOR DUE TO UNIFORM LOAD ON ELEMENT

F1 = 0·1428571 ab sin y +0·02380952 a2 (sin y cos y+sin fJ cos fJ)

F2 = 0·01904762 a(b 2 sin y cos y - e2 sin fJ cos fJ) + 0·006349206 a2(b cos 2 y sin y - e cos2 fJ sin fJ)
+0·005555556 a2(e sin 3 fJ - b sin 3 y)

F3 = -0,03809524 ab2 sin 2 y -0,01190476 a'(b cos y sin l y + e cos fJ sin2 fJ)

F4 = 0·001785714 a(b 3 cos2 y sin y + e3 cos2 fJ sin fJ) + 0·0005952381 a2(b 2 cos3 y sin y + e2 cos3 fJ sin Ii)
-0,001388889 a2(b 2 cos y sin 3 y +e2 cos fJ sin 3 fJ)

Fs = 0·003571429 a(b3 cos y sin2
), _e 3 cos fJ sin 2 fJ)+0'002579365 a2(b 2 sin 2 y cos2 y _e l sin' fi cos' {j)

+0·001388889 a2 (e 2 sin4 fJ - b2 sin4 y))

Fo = 0·003571429 ab 3 sin 3 y +0·001984127 a2 (b 2 cos l' sin 3
)' + e2 cos Ii sin 3 Ii)

F7 = 0·1666667 ab sin l' + 0·02380952 (b 2 sin y cos y- a2 sin fi cos fi)

F8 = 0·02539683 ae2 sin fJ cos fi +0·006349206 a(b2 sin y cos]' - ae cos 2 Ii sin fi) + 0·005555556 ale sin' fi
+0·01904762 a2 b sin I'

F9 = 0·03095238 ab 2 sin l
]' - 0·01190476 a 2e cos fi sin 2 Ii

F, 0 = 0·002380952 ae3 cos2 fi sin fi + 0·0005952381 al(b 2 sin y cos )'- e2 cos' Ii sin Ii)
+0·001388889 a2 e3 cos fi sin' fi +0·001785714 a3b sin l'

F Il = -0,004761905 ae' sin 2 fJ cos fi + 0·002579365 a2e2 cos 2 fi sin 2 Ii
-0·001388889 a2 (b 2 sin 2 l' -U2 sin4 {j)

F'2 = 0·002380952 ab' sin' y - 0·001984127 a2e2 cos fi sin' fi
F13 = 0·1904762 ab sin y - 0·02380952 (a 2 sin l' cos I' + b2 sin]' cos y)

F'4 = -0,01904762 ab 2 sin y cos y +0·01190476 a2b cos2 y sin ,,-0,03095238 a2b sin,'

F,s = 0·03095238 ab 2 sin 2 l' -0,01190476 a2 b COS)' sin 2
)'

FlO = 0.002380952a(b 3 cos2 ]'sin '; +a2 b sin 1)-0·001984127 a2 b2 cos3 ';sin ';+0·0007936508 a2b' cos)' sin y

F, 7 = 0·004761905 ab l cos pin 3 y -, 0·003968254 al b2 sin 2 1 cos 2 l' +0·002777778 a2b2 sin'

FI8 = 0·002380952 ab' sin 3 1-0'001984127 a2b2 cos y sin 3 y

where

l;:1~ [;:]
and FA = Fw A.

Fey

Fe,

FI8 Fwxx

Fwxv

Fwy}'
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algebraic expressions for the stiffness coefficients. Since the integration has been carried
out in algebraic form, the only error is due to rounding. Numerical procedures, such as
Gauss Quadrature, have been found to converge very slowly, when used to integrate the
expression (2.1), or in fact any function which involves negative powers. The stiffness
matrix in [7] was evaluated using Gaussian quadrature, with basically the same displace­
ment shapes used here. The results shown in Fig. 5 are thought to reflect the benefit of
accurate integration.

On the IBM 360/75 a time of approximately 0·15 of a second is required to evaluate the
coefficients of the stiffness matrix of the triangular element, using the previously calculated
algebraic formulae (which require 16 K words of core storage).

3. CALCULATION OF LOAD VECTOR

This programme for algebraic manipulation was also used to calculate the load vector
for the triangular element, under a uniform load, by exact integration of the displacement
function w for each nodal parameter. The results ofthis computation are shown in Table 1.

TABLE 2. RESULTS FOR CENTRAL DEFLECTION OF PLATES

Element subdivision (Symmetrical W.r.t. top left corner)

Support

lSJl ITI I
Support I r
~ a/2------->1

A B C

Case 1. Square plate, four sides simply supported, central point load.
Case 2. Square plate, four sides clamped, central point load.
Case 3. Square plate, four sides simply supported, uniform load.
Case 4. Square plate, four sides clamped, uniform load.
Case 5. Rectangular plate b/a = 2, four sides simply supported, central point load.
Case 6. Rectangular plate b/a = 2, four sides clamped, central point load.

The results show the central deflection as a deflection coefficient IX, where IV = a2 IXP/D for point load (P) and
IV = a4 cxq/D for uniform load (of intensity q).

Degree of element
A B C

Timoshenko's
subdivision value [8]

Case 1 0·011490 0·011574 0·011590 0·01160

Case 2 0·005535 0·005582 0·005600 0·00560

Case 3 0·004061 0·004062 0·004063 0·00406

Case 4 0·001261 0'001264 0·001265 0·00126

Case 5 0·015978 0,016416 0·016476 0,01651

Case 6 0·006871 0'007125 0·007183 0·00722
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4. DISCUSSION OF RESULTS

Results for a square plate under uniform and concentrated load, and a rectangular
plate under concentrated load, are given in Table 2 and Figs. 3 and 4 for simply-supported
and clamped edge conditions. It can be seen that the present triangular element yields a
consistently accurate approximation, even when only 2 elements are used. The solutions
are also associated with an upper bound on the strain energy and converge rapidly in all
cases tested.

Comparison, where possible, has been made with other compatible triangular bending
elements, [4-6].

This formulation of the displacement function is non-symmetric since it requires the
choice of oblique co-ordinates along two sides of the triangle. To achieve stiffness coeffi­
cients in general form which would be independent of the choice of axes one could derive
three sets ofcoefficients for the three possible choices of axes and then sum them and divide
them by three with the programme for algebraic manipulation. However it is easier to
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FIG. 3. Central deflection of square plate under point load.

t The number of free parameters was not quoted in this paper; the figures quoted are the author's interpreta­
tion.
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substitute three sets of numerical values into the general coefficients and average the results.
When this was tried for an arbitrary triangle the stiffness coefficients corresponding to the
three choices of axes produced differences in the coefficients of the order of 0·004 per cen1
on average and 0·1 per cent at most. The increase in computing time to average the coeffi·
cients is of course three fold.

5. CONCLUSIONS

The element presented in this paper appears to provide increased accuracy in the
solution of plate flexure problems, and serves to emphasise the value of careful choice of
boundary displacement variation assumptions.

The computer programmed algebra not only provides exact integration, but also
enables the rapid evaluation of stiffness matrices for triangular elements of differing
geometry.
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